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a b s t r a c t

NMR signals are unavoidably impaired with noise stemming from the electronic circuits of the spectrom-
eter. This noise is most often white and Gaussian and can be greatly reduced by applying low pass ana-
logue and digital filters. Nevertheless, extra noise with other statistics than Gaussian may interfere with
the signal, e.g. when auxiliary electrical devices are placed near the magnet of the NMR spectrometer.
This paper reports on how one can make use of this difference in statistics to remove the noise caused
by electrical devices before any further data processing. The algorithm is based on the use of a new linear
low pass filter, which consists in fitting NMR data in the time domain with a cardinal series and whose
spectral width can be controlled. Over other filtering methods such filter has the advantage of not distort-
ing the signal neither at the beginning nor the end of the acquisition period. The performance of the
method is demonstrated by applying it to a data set collected in a flow PGSE experiment and impaired
with noise emanated from a brushed DC electric motor.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

NMR signals are inevitably corrupted by noise stemming from
electronic circuits of the spectrometer. Within the spectrometer’s
bandwidth, this noise can most often be viewed as white and
Gaussian. As the spectrum of the signal emanating from the sample
is, contrariwise, limited to a rather restricted zone of the frequency
domain, most noise can be efficiently eliminated with the benefit
of low pass filters. For this purpose, most commercial spectrome-
ters are now equipped with either finite (FIR) or infinite (IIR) im-
pulse response analogue and digital filters with often a limited
number of fixed bandwidths.

After its frequency has been scaled down from radio to audio
range, the continuous physical signal emitted by the NMR sample
is fed into analogue filters. The digital filters are fed with discrete
data points of the signal sampled by analogue-to-digital converters
(ADC) at a much higher frequency than required by the Nyquist cri-
terion to accurately record all the harmonics in the spectrum of the
signal. The output of the filters of either type is a signal from which
high frequency noise was removed and whose frequency band
width and sampling frequency, as far as digital filters are con-
cerned, correspond to the Bruker acquisition parameter swh set
by the spectroscopist. One can also deliberately acquire an over-
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sampled signal by increasing swh and using an analogue filter with
a broader passband and process it with one of the digital convolu-
tion filter described in literature.

Unfortunately, most known analogue and digital convolution
filters are designed to optimise the filtering of signals in the fre-
quency domain and tend to severely distort them in the time do-
main when applied to truncated signals. In this manuscript we
outline the principles of a new linear low pass filtering method
that preserves all the features of the signal in both time and fre-
quency domain. The filtering method is an example of using the
Bayesian approach to solving inverse problem [1] and consists in
fitting raw NMR data with a finite sum of cardinal sine functions.
A thorough description of the ‘cardinal series filter’ and rules for
setting its parameters will be discussed in detail elsewhere.
Instead, we introduce herein one of possible applications of this
filter and demonstrate its usefulness in processing data collected
in a PGSE experiment for determining velocity field in a fluid flow-
ing in a porous medium.

Certain experiments require that auxiliary electric devices
should be placed near or inside the magnet of the NMR spectrom-
eter, which may bring about severe extra distortions of measured
NMR signals [2–9]. In rheological and fluid mechanics studies by
NMR in particular, electric motors and various monitoring units
are put underneath the magnet of the NMR tomographer. Such
distortions often obey statistics rather different from that of
above-mentioned electronic noise. Unlike Gaussian noise, they of-
ten appear as a limited number of chaotically dispersed sharp
spikes in the time domain, have hardly identifiable spectrum pat-
terns and thus are difficult to remove by using a linear low pass
filter. Noise caused by a brushed DC electric engine, which we have
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observed in our rheological studies [6–9], has a significantly higher
covariance than Gaussian electronic noise; and even though only
about one of ten NMR data samples were thus affected, it greatly
reduced the overall signal-to-noise ratio, while Gaussian noise le-
vel was very reasonable.

Herein we suggest how the above-mentioned difference in
noise statistics can be used to eliminate those highly defective
samples from each individual FID record of an experiment, before
adding them together to implement further noise averaging and
phase cycling. The proposed algorithm applies to oversampled
band-limited NMR signals and relies on a recursive use of the car-
dinal series filter for estimating noise levels. Over the last ten
months we have processed all the NMR data that we acquired at
the presence of a brushed DC electric motor. The method has
proved invaluable for our rheological studies and we believe it
could be also useful for damping noise generated by other electric
devices.

2. Theory

In NMR spectroscopic or imaging experiments, data, which we
shall call ‘total data set’ hereafter, are often acquired in several
steps. Data recorded at each step, e.g. FIDs, which we shall call
‘individual data sets’ or simply ‘data sets’, are stored separately
and made into linear combinations to damp noise or select partic-
ular coherence pathways. Each individual data set will be digitised
to give complex numbers, which we shall call ‘samples’. By the
word ‘signal’ we shall mean either an FID or echo recorded as a
function of time and by ‘spectrum’ a Fourier transformation (FT)
of the signal.

If an NMR signal z(t) corrupted by an electronic noise dz(t) was
acquired during a time interval [t1,tN] and sampled at a frequency
Xs = 2p/(tn+1 � tn), the resultant data set z(tn) + dz(tn) (1 6 n 6 N)
can be viewed as a sum of N complex samples z(tn) = x(tn) + i � y(tn)
of the noise-free signal and N corresponding complex samples
dz(tn) = dx(tn) + i � dy(tn) of white electronic noise. If, furthermore,
we suppose that noise has zero mean value

l ¼ hdzðtnÞi ¼ 0; for 1 6 n 6 N; ð1Þ

standard deviation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdz2ji

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdx2ji

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjdy2ji

q
; ð2Þ

and Gaussian probability density distribution (solid line in Fig. 1)
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Fig. 1. Product (solid line) of Gaussian probability density P(r) and standard
deviation r as well as probability (dashed line) D(r) as a function of r/r, where r
stands for a standard deviation.
PðjdzjÞ ¼ jdzj
r2 exp � jdzj2

2r2

 !
; ð3Þ

and, thus, probability (dashed line in Fig. 1)

DðjdzjÞ ¼
Z jdzj

r¼0
PðrÞdr ¼ 1� exp � jdz2j

2r2

� �
; ð4Þ

then about 99 per cent of such noise-impaired samples z(tn) + d z(tn)
will fall not further than 3r from their noise-free values z(tn).

To reduce noise, a convolution low pass filter can be applied to
the raw data in the time domain. This consists in calculating new
samples zfiltered(tn) + dzfiltered(tn) as a linear combination of the
samples z(tn) + dz(tn) of an experimentally acquired data set, i.e.

zfilteredðtnÞ þ dzfilteredðtnÞ ¼
2p
Xs

XN

m¼1

ðzðtmÞ þ dzðtmÞÞf ðtn � tmÞ: ð5Þ

This amounts to the multiplication of the spectrum of the signal by
the FT ~f ðxÞ of the kernel function f(t) in the frequency domain. The
linear transformation of Eq. (5) with a properly chosen f(t) will
preserve all the low frequency harmonics of which consists the
noise-free signal z(tn), while partially removing harmonics whose
frequencies exceed the bandwidth of the signal and which, there-
fore, pertain exclusively to high frequency noise.

Kernels most often used in convolution low pass filters are
cardinal sine and functions similar to it. The FT of the normalised
cardinal sine function, i.e.

f ðtÞ ¼ X
2p

sinc
X
2

t
� �

; where sincðaÞ ¼ sinðaÞ
a

ð6Þ

is a rectangular function, i.e. ~f ðxÞ ¼ 1 for jxj<X/2 and ~f ðxÞ ¼ 0
elsewhere. When applied to a signal acquired during a period of
time long enough to achieve high spectral resolution and sampled
at a frequency higher than required by the Nyquist criterion, the
sinc convolution filter has negligible roll-off and allows to reduce
the overall noise level in the time domain by a factor

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Xs=X

p
: ð7Þ

However, the convolution filters distort the noise-free data set
z(tn) at the beginning and end of the record, as the sum in Eq. (5)
cannot be extended for tm smaller than t1 and larger than tN. These
distortions are particularly severe and widespread when the signal
is truncated to narrower [t1,tN]. In the frequency domain, this fail-
ure can be explained by the spectral resolution dx = 2p/(tN � t1) of
the signal being rather poor compared to the filter bandwidth.

We propose a new low pass filter suitable for processing trun-
cated signals. It consists in fitting the N available raw data samples
z(tn) + dz(tn) of a data set with a truncated cardinal series

zðtnÞ þ dzðtnÞ �
XMsup

m¼Minf

amsinc
X
2
ðtn � smÞ for 1 6 n 6 N; ð8Þ

where the bandwidth of the cardinal sine functions X is set to just
over that of the signal Xo and locations of their maxima sm are regu-
larly spaced at ds = sm+1 � sm = 2p/X within an interval [t1 � 12p/X,
tN + 12p/X]. The complex coefficients am are sought for to achieve the
best least square agreement in Eq. (8). Thus found optimum coeffi-
cients am can be used to calculate the complex signal s(t) at an
arbitrary moment t as

sðtÞ ¼
XMsup

m¼Minf

amsinc
X
2
ðt � smÞ ð9Þ

and, in particular, at the moments tn at which the signal was origi-
nally sampled by the ADC of the spectrometer. And the ensemble of
these s(tn) are considered as a filtered data set.
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In theory, the series on the right hand side of Eq. (9) is a band-
limited function with a bandwidth X. In practice, the Fourier trans-
formation of the series within the finite interval [t1,tN] may prove
to have a bandwidth somewhat broader than X, owing to this trun-
cation. Like its infinite analogue [10], it gives an excellent approx-
imation to any band-limited signal with a bandwidth narrower
than or equal to X in the finite interval [t1,tN]. On the other hand,
it can’t account for the harmonics whose frequencies appear out-
side its own bandwidth. This makes of the truncated cardinal series
and excellent low pass filter.

Given linear character of the cardinal series filter and linear
independence of at least those of the cardinal sine functions in
the sum of Eq. (9) whose maxima sm appear within the interval
[t1,tN], the deviation r0 of the raw samples z(tn) + dz(tn) from those
delivered by the cardinal series filter s(tn) is proportional to their
standard deviation r from the noise-free signal z(tn) and obeys
an inequalityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M � 12
N

r
6

r0

r
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

N

r
; ð10Þ

where M stands for a total number of cardinal sine functions in the
series M = Msup �Minf + 1, and r0 is defined as a root mean square
(RMS) value:

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN

n¼1

jsðtnÞ � zðtnÞ � dzðtnÞj2
vuut ð11Þ

When signals are oversampled and so N�M, r
0
tends to r and be-

comes a good estimate of the latter. Thus, cardinal series filters can
be applied for estimating noise levels.

When extra non Gaussian noise with larger standard deviation
or even non zero mean value interfered with some of the samples
z(tn) + dz(tn), they are likely to fall further than 3r0 from s(tn) pro-
duced by the cardinal filter. This can be used as a basis for an algo-
rithm for filtering non Gaussian noise as follows:

(a) A raw data set is processed with a cardinal series filter and
the standard deviation r0 is calculated as stated in Eq. (11).

(b) Those of the raw samples that fell less than three times the
standard deviation from corresponding output samples of
the filter are retained, while the others are set aside.

(c) Thus restricted data set is processed with the cardinal series
filter and its standard deviation is calculated.

(d) Then the whole raw data set is sorted out again, as in the
step b, but now using the filter’s output samples and stan-
dard deviation as determined in the step c. The steps c and
d are repeated until two sequentially retained subsets of
samples turn out to be the same.

(e) One can then either keep the lastly retained subset of raw
samples, which is free of non Gaussian noise, or rather the
last output samples of the cardinal series filter to enjoy fur-
ther noise reduction due to high frequency Gaussian noise
filtering.

Should the non Gaussian noise have a non zero mean value l,
this method can still be applied successfully. Nevertheless, to
streamline the method, one had better replace the definition of
r0 as an RMS in Eq. (11) by

r0 ¼ 1
c

1
N

XN

n¼1

jsðtnÞ � zðtnÞ � dzðtnÞjv
 !1

v

;

where c ¼
ffiffiffi
2
p
ðCð1þ v=2ÞÞ

1
v ð12Þ

Cis a gamma function and m a constant parameter that can be set
arbitrarily within 0 < m < 2, smaller values of m giving more weight
to the samples that fell near to the noise-free values z(tn) rather
than z(tn) + l.

In practice, an experiment is repeated several times, and indi-
vidual data records added together to either choose a desired
coherence pathway by cycling phases of RF pulses and the receiver
or simply to improve on signal-to-noise ratio. To avoid that distor-
tions due to non Gaussian noise in individual data sets spread over
virtually all the moments tn in the total data set, the records made
in different scans should be stored and freed from non Gaussian
noise separately from one another before they can be added to-
gether to form a total data set.

3. Results and discussion

Success in application of a convolutions filter to band-limited
signal with a bandwidth Xo is known to depend crucially on its
spectral resolution dx. To ensure this, the signal must be sampled
long enough for tN � t1� 2p/Xo. Lowering the resolution worsens
greatly the performance of the filter and it fails utterly when ap-
plied to truncated signals, i.e. tN � t1 6 2p/Xo. To illustrate this,
we applied a cardinal sine convolution filter with rectangular-
shaped spectrum of unit height to signals (empty squares in
Fig. 2a–c), modelled as 128 equally spaced samples of a function

xðtÞ ¼ sinc2 cp t
t0

� �
; where coefficient

c ¼ 0:95 and to stands for an arbitrary time unit; ð13Þ

within intervals (a) �5to 6 t 6 5to, (b) �0.5to 6 t 6 0.5to and (c)
�0.2to 6 t 6 0.2to and impaired with computer-simulated white
normally distributed noise. The filter width was set to just over
the band width Xo = 4cp/to of the filtered function.

A discrete FT of the samples in Fig. 2a using the Fast Fourier
Transformation (FFT) algorithm gives a rather well resolved
(dx = 0.053Xo) spectrum (empty squares in Fig. 2d) that corre-
sponds well with the continuous FT of the function x(t), i.e.

~xðxÞ ¼ 1
c

1� 2x
X0

� �
when jxj 6 X0

2
ð14Þ

and zero elsewhere. Applying the filter to these samples results in a
significantly cleaner signal (continuous line in Fig. 2a) that pre-
serves all the features of the original data set. Theoretically (see
Eq. (7)), signal-to-noise ratio could increase by a factor of 2.53. An
FT of the truncated signal in Fig. 2b results in a distorted and poorly
resolved spectrum (empty squares in Fig. 2e), as the spectral reso-
lution (dx = 0.53Xo) is now insufficient to discriminate among fre-
quencies within the spectral width of the function x(t). Applied to
these samples, the filter gives a cleaner signal (continuous line in
Fig. 2b) that differs, however, markedly from the original data set.
Applying the same filter to the even more truncated signal (empty
squares in Fig. 2c) with, thus, even poorer spectral resolution
(dx = 1.32Xo) gives a clean, albeit completely disfigured signal
(continuous line in Fig. 2c). Convolution filters with more sophisti-
cated kernels, e.g. Gaussian or Lanczos, proved hardly better (not
shown here). Nor can zero-filling solve the problem (not shown
here either). The filter based on using truncated cardinal series, con-
trariwise, proves (see Fig. 3) suitable for processing truncated
signals.

The cardinal series filter can be useful not only for filtering
white Gaussian electronic noise, but also for eliminating other type
of noise, generated by auxiliary electric devices. Fig. 4a shows raw
samples of the real part of a data set recorded in one of the 32 indi-
vidual data sets of a pulsed gradient spin echo (PGSE) experiment.
The experiment consisted in forcing a yield-stress emulsion (blend
of water and oil; see details in Section 5) to flow through a porous
medium (randomly packed glass beads), by means of a piston
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computer-simulated normally distributed noise before (empty squares) and after (continuous lines) an application of a sinc convolution filter with rectangular-shaped
spectrum of unit hight (dotted squares in d–f). The filter width was set to just over the band width Xo = 4cp/to of the filtered function. The real (empty) and imaginary (filled
squares) parts of the spectra in (d)–(f) of the signals in (a)–(c), respectively, were obtained by the Fast Fourier Transform (FFT) algorithm.
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D. Bytchenkoff et al. / Journal of Magnetic Resonance 202 (2010) 147–154 151
syringe driven by an electric engine placed about one meter away
from the magnet channel. Ten per cent of samples or so were
greatly distorted by the non Gaussian noise and were sorted out
and removed using the algorithm described above to give the
restricted data set of Fig. 4b. The noise probability (black diamonds
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in Fig. 5) for the raw FID recording of Fig. 4a reaches a unity hight
plateau more slowly than the theoretical Gaussian probability
function D(r) (solid line). This indicates that noise with other
statistical distribution than Gaussian indeed interfered with the
registered signal. On the contrary, the probability (empty squares
P(
v)

 [a
.u

.]
P(

v)
 [a

.u
.]

-1,5 -1 -0,5 0
-1

0

1

2

3

4

5

6

v [mm/s]

-1,5 -1 -0,5 0
-1

0

1

2

3

4

5

6

v [mm/s]

Fig. 6. Velocity distribution determined from a data acquired in a PGSE experiment
(top) with and (bottom) without prior elimination of the defective samples and
filtration.
in Fig. 5) for the restricted data set of Fig. 4b, processed as sug-
gested above, corresponds to the Gaussian probability function,
suggesting that defective samples of non Gaussian statistics have
now been rejected. A cardinal series filter was then applied to this
restricted data set to recalculate all the samples at the times tn at
which the raw data set was originally digitised by the analogue-
to-digital converters (ADC) of the spectrometer. Thus calculated
samples in Fig. 4c show further improvement in signal-to-noise
ratio.
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samples impaired with defects (see Fig. 8 bottom) modelled as normally distributed
random numbers of zero mean and standard deviation 0.2.
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To demonstrate the increase in the precision of indirectly mea-
sured physical quantities achievable with the benefit of our algo-
rithm, we used the data acquired in the PGSE experiment to
determine the statistical distribution of velocity along the main
direction of the flow stream. After application of the present itera-
tive filtering process, the signal processing first consists in measur-
ing the intensity and phase of the NMR signal at the middle time of
each of the 32 FID recordings. This middle time actually corre-
sponded to the theoretical position of the top of a spin echo. Signal
filtering in the time domain is particularly necessary in this case,
because the relevant information for the experiment is a time do-
main information. The 32 collected echo values correspond to a
sampling of the Fourier transform of the velocity distribution.
The last processing then consisted in a Fourier transform to get
the distributions displayed in Fig. 6. The distribution function in
Fig. 6a was determined with most satisfactory precision from the
data that were first freed from the samples corrupted with non
Gaussian noise before being further filtered from the high fre-
quency Gaussian noise. On the other hand, the distribution func-
tion in Fig. 6b lacked precision, when the data were analysed
without prior application of the algorithm described above.

Finally, to convince ourselves and our readership that our meth-
od does not have any adverse effects on the exactitude of thus fil-
tered data while enhancing their precision, we processed a
numerically synthesised noise-impaired data set.

The Fig. 7a was modelled as 1024 equally-spaced noise-free
samples of an FID-like function

xðtÞ ¼ exp
�t
T2

� �
� cosðxtÞ; ð15Þ
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Fig. 8. (top) Noise modelled as normally distributed random numbers of zero mean
and standard deviation 0.02; (bottom) Defects modelled as normally distributed
random numbers of zero mean and standard deviation 0.2.
where we set T2 = 1 s and x = p rad/s, respectively. The sampling
interval was t1 6 t = tn 6 tN, with t1 = 0, tN = 5 s and the sampling
frequency was set to 200 Hz. These samples were then added one
by one with 1024 samples of noise, shown in Fig. 8 (top), modelled
as normally distributed random numbers of zero mean and stan-
dard deviation 0.02. The resultant noise-impaired samples are
shown in Fig. 7b. Finally, 102, i.e. ten per cent, of the samples were
selected at random (uniform randomness) and added one by one
with 102 defective samples, shown in Fig. 8 (bottom), modelled as
normally distributed random numbers of zero mean and standard
deviation 0.2. The resultant noise-impaired and partially defective
samples are shown in Fig. 7c. Fig. 9 (top) shows the result of pro-
cessing the noise-impaired signal of Fig. 7c as described above.
Fig. 9 (bottom) shows the difference between the noise-free data
set of Fig. 7a and resultant data set of Fig. 9 (top). The residual stan-
dard deviation of the filtered data is 3.83 � 10�3, which is about one
fifth of that of the computer-synthesised noise-impaired data.

4. Conclusions

We devised a linear low pass filter based on the use of cardinal
series and suitable for processing truncated oversampled NMR sig-
nals. We also proposed a procedure for freeing NMR data sets of
samples severely impaired with noise brought about by electric
devices put near the magnet of the spectrometer. Its algorithm
relies on the cardinal series filter for estimating noise levels. We
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Fig. 9. (top) Result of processing the noise-impaired and partially defective data set
of Fig. 7c with the benefit of the algorithm based using cardinal series; (bottom)
Difference between the noise-free data set of Fig. 7a and resultant data set of Fig. 9
(top).
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demonstrated the benefit of applying the procedure before any fur-
ther data processing by using it to determine velocity distribution
from data collected in a PGSE experiment.

5. Experimental

All numerical calculations, simulations and data processing
algorithms were coded in Fortran 95 programming language
[11,12]. Uniform and normally distributed random numbers were
generated using Park–Miller with Bays–Durham shuffle and Box–
Muller method, respectively. Where necessary, matrices were in-
verted using LDLT decomposition.

The water proton PGSE experiment was carried out on emulsion
(a blend of CaOH, water and dodecane) extruded from a sample of
sintered glass beads (diameter 2 mm) at a vertical wide-bore Bru-
ker 24/80 Avance DBX MRI spectrometer equipped with a 20 cm
birdcage RF coil and operating at 0.5 T.
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